
Imitation of Life:

Advanced system for native Artificial Evolution

by Sperl Thomas

sperl.thomas@gmail.com

July 2011

Abstract:

A model for artificial evolution in native x86 Windows systems has been developed at the end
of 2010. In this text, further improvements and additional analogies to natural microbiologic
processes are presented. Several experiments indicate the capability of the system - and raise
the question of possible countermeasures.

CONTENTS 2

Contents

1 Introduction 3

2 Artificial Biosynthesis 3

2.1 Meta-Language . 4
2.1.1 Mutable API calls . 6
2.1.2 Example: ROL instruction . 6

2.2 Translator . 7
2.3 Replication, Mutation and Selection . 9

3 Mutations 9

3.1 Point mutation - bit flip . 9
3.2 Chromosomal inversion - byte eXCHanGe . 10
3.3 Deletion, insertion, translocation . 11
3.4 Horizontal gene transfer . 12
3.5 *Polymorphism: neutral codon variation . 12

4 Further improvements 13

4.1 Start- and Stop codons: Splicing . 13
4.2 Optimization of the instruction set . 15
4.3 Optimization of the alphabet . 16

5 Experiments 18

5.1 Hamming distance . 18
5.2 Effect of alphabet ”energy” . 19
5.3 Effect of Start- and Stop-codons . 20

6 Outlook 21

1 Introduction 3

1 Introduction

Artificial Evolution has become a successful playground for evolutional experiments, when
Tom Ray released the Tierra system.[1]. Tierra is a virtual system with self-replicating
programs which simulate mutations in form of copying errors. The artificial creatures
struggle for the limited resources (such as CPU time and memory space), thus the systems
fullfills the three criteria for evolution: replication, mutation, selection.

In order to achieve high robustness against mutations, Ray introduced techniques such
as non-direct addressing and seperation of arguments and operations.

Many interesting insights to evolution have been found with Tierra (such as evolution
of multi-cellularity[2] or parallel computing[3]) and similar systems such as avida (evolution
under high mutation rate[4] and emergence of complex features[5]).

Iliopoulos, Adami and Ször have discussed the consequences for computer security of
implementing darwinian principles into native system, in 2008.[7] They concluded that a
truly undetectable virus might be more feasible than previously imagined, and that it is
currently unknown whether there would be a defence against such organisms.

In 2010, I have created the first (to my knowledge) implementation of an artificial
evolution system for a native operation system (Microsoft Windows XP+ 32bit), using
several parallels to the natural biosynthesis process[8]. A short comparison between usual
x86 code and the new artificial evolution concept shows that the new concept is actually
more robust against mutations.[9]

The presented proof-of-concept organism as well as the underlaying metalanguage have
been analysed in detail by Peter Ferrie in 2011[10][11].

The idea of this article is to continue this research...

2 Artificial Biosynthesis

The main idea is to use a similar concept to natural biosynthesis: The codons of the mRNA
are translated into amino acids using tRNA molecules, these amino acid chains form the
proteins - the actually functional part of the cell.

In the artificial analogon, the whole information of the organism is saved in a chain of
codons. Each codon consists of 8bits, thus there are 256 different codons. In the translator
(similar to tRNA in the ribosom), the codons will be mapped to an x86 instruction (similar
to an amino acid) - a chain of x86 instructions form the protein, the functional part of the
organism:

2.1 Meta-Language 4

Artificial Natural

bit nucleobase
byte codon

instruction amino acid
function protein

translator tRNA

In the natural system, the information is saved in codons, which consists of 3 nucleobases
- as there exists 4 different nucleobases (Adenine, Guanine, Thymine, Cytosine), a codon
can have 43 = 64 different representations. Each codon codes one out of 20 amino acids,
thus there is a redundancy in the mapping process, which is used to increase the robustness
of the code. This redundancy is also used in the artificial biosynthesis as there are less than
28=256 base functions of the meta language.

2.1 Meta-Language

The idea is to create a compact, complete instruction set with seperation of arguments and
operations, and with non-direct addressing.

The language provides seven registers with specific properties:

• RegA, RegB, RegD - general purpose registers (correspond to EAX, EBX, EDX)

• BC1 - operation register (correspond to EBX): the first argument of every operation,
and source or destination for other instructions

• BC2 - argument register (correspond to ECX): the second argument of every operation

• BA1 - write address register (correspond to EDI): holds the address for write instruc-
tions

• BA2 - jump address register (correspond to ESI): holds the address for jump instruc-
tions

The seperation of arguments and operations is realized by using BC1 (and BC2) as
standard arguments, and filling them independently of the operation.

The language provides PIC (position-independent code). Every address is relative to the
instruction pointer thus is independent of the position.

2.1 Meta-Language 5

Instruction HLL Assembler

nopREAL nop

nopsA BC1 = RegA mov ebx, eax

nopsB BC1 = RegB mov ebx, ebp

nopsD BC1 = RegD mov ebx, edx

nopdA RegA = BC1 mov eax, ebx

nopdB RegB = BC1 mov ebp, ebx

nopdD RegD = BC1 mov edx, ebx

save BC2 = BC1 mov ecx, ebx

addsaved BC1 + = BC2 add ebx, ecx

subsaved BC1 - = BC2 sub ebx, ecx

saveWrtOff BA1 = BC1 mov edi, ebx

saveJmpOff BA2 = BC1 mov esi, ebx

writeByte byte[BA1] = (BC1 & 0xFF) mov byte[edi], bl

writeDWord dword[BA1] = BC1 mov dword[edi], ebx

getDO BC1 = DataOffset mov ebx, DataOffset

getdata BC1 = dword[BC1] mov ebx, dword[ebx]

getEIP BC1 = InstructionPointer call gEIP; gEIP: pop ebx

push push BC1 push ebx

pop pop BC1 pop ebx

pushall pushad pushad

popall popad popad

zer0 BC1 = 0 mov ebx, 0x0

add0001 BC1 + = 0x1 add ebx, 0x1

add0004 BC1 + = 0x4 add ebx, 0x4

add0010 BC1 + = 0x10 add ebx, 0x10

add0040 BC1 + = 0x40 add ebx, 0x40

add0100 BC1 + = 0x100 add ebx, 0x100

add0400 BC1 + = 0x400 add ebx, 0x400

add1000 BC1 + = 0x1000 add ebx, 0x1000

add4000 BC1 + = 0x4000 add ebx, 0x4000

sub0001 BC1 - = 0x1 sub ebx, 0x1

shl BC1 << (BC2 & 0xFF) shl ebx, cl

shr BC1 >> (BC2 & 0xFF) shr ebx, cl

xor BC1 ∧ = BC2 xor ebx, ecx

and BC1 & = BC2 and ebx, ecx

mul (RegD: RegA) = RegA * BC1 mul ebx

div (RegD, RegA) = RegA / BC1 div ebx

JnzUp jz over; jmp esi; over:

JnzDown jnz down; times 32: nop; down:

call stdcall ebx

CallAPILoadLibrary stdcall dword[LoadLibrary]

2.1 Meta-Language 6

2.1.1 Mutable API calls

To use the APIs provided by the OS, an organism can use the call instruction:

One possibility is to save the API addresses directly within the organism body. However,
this has two disadvantages: Firstly, the addresses may change for each new version of
Windows. Secondly, the probability that a different and valid API address appears out
of one single bitflip is very low (a rough estimate: a memory address of 32-bit gives 232

possible addresses - say there are 5000 valid API addresses. The probability to reach one
of them is P = 5000

232 ≈ 10−6).

A different method is to save a short hash of the desired API name in the organism.
Then load the DLL, scan the export section for API names and create hashes for each API.
If the hashes match, save the address of the API. This approach is independent of the OS
version, and it’s very mutable. It is possible to use hash as short as 12bit for each API.
Let’s say there are 1000 APIs in a DLL file. The probability to access on of these APIs
within one single bitflip is given by P = 1000

212 ≈ 0.25. In average, every 4th bitflip in the
API hash leads to a different hash corresponding to a valid API.

2.1.2 Example: ROL instruction

The x86 instruction ROL (Rotate Left) is not directly provided by the instruction set.
However, it can be written using just instructions of the set.

Let’s say, one would like to write rol RegA, c, where c is some integer - then the usual
assembler instructions looks like this:

2.2 Translator 7

Translating this into the ArtEvol MetaLanguage is very easy:

The 2nd argument (c in this case) is saved in the BC2 register, then the first argument
is loaded into the BC1 register and the operation is performed. As ROL requires three
operations, the result of the first one is temporarily saved at the stack; the same procedure
is performed again, and in the end, the results are combined.

The addnumber is a macro which returns the right combination of addNNNN instructions.

2.2 Translator

In order to convert the metalanguage instructions to native x86 instructions, a tiny
translator is used:

2.2 Translator 8

2.3 Replication, Mutation and Selection 9

2.3 Replication, Mutation and Selection

To achieve Evolution, a system requires Reproduction, Mutations and Selection.

In the reproduction stage, the organism creates a living copy of itself. In the
artificial system of a computer, this can be done in the same way as computer viruses
and computer worms do - interfere with special file formats or network protocols such
that the copy will be executed in a different habitat (other computer, other file, ...).
However, this requires alot of previous knowledge about the system, thus is not the simplest
starting point for evolution. The most trivial way of reproduction is to copy the own file in
the current directory and run it - which is actually the way how it is done in the experiments.

The interference between reproduction and mutations leads to non-identical replica of
the organism. In the biological system, mutations happens due to disruptive effect such
as cosmic X-rays. This leads to point mutations (exchange of one single codon) or more
difficult chromosome abnormality. The natural mutation probability in a computer system
(such as mistakes in the copy process) is neglectable, thus the organism has to carry its
own mutation engines. This is explained in detail in the next chapter.

Natural selection is a process in which a certain trait becomes more or less common in
the population, depending on its effect on the fitness of the organism. This process appears
when the organism compete, struggle for limited values (such as energy), or are exposed
to natural enemies. In the artificial system of a computer, anti virus programs could be
responsible for natural selection (and by that unwillingly initiate a faster evolutionary
process at all). A different selective pressure comes from attentive user, who would stop
any suspicious behaviour.

3 Mutations

3.1 Point mutation - bit flip

Point mutations change single nucleobases in the DNA. These mutations can be categorized
into silent (when the affected codon maps to the same amino acid due to the redundance
in the alphabet), missense (when the affected codon maps to a different amino acid); or
nonsense (when the affected codon maps to the STOP codon).

A native analogon to that concept would be the change of single bits in the organ-
ism - called Bitflip. These mutations have the same categories as their biological companion.

The mutation rate (mutations per base per generation) in biological organisms varies
from 10−4 for very small (some kilo bases) to 10−8 − 10−9 for humans (some giga bases).
Finding an adequate mutation rate for artificial organisms is not trivial, as too small values
lead to mainly unmutated offspring, thus no evolution; whereas too big mutation rates lead

3.2 Chromosomal inversion - byte eXCHanGe 10

to extinction of the population. To get the best, one could test organisms with different
mutation rate, and take the critical value.

Figure 3.1: Five populations with a Figure 3.2: Five populations with a
mutation rate of 1 / 7.001 mutation rate of 1 / 9.001

Figure 3.3: Five populations with a Figure 3.4: Five populations with a
mutation rate of 1 / 11.003 mutation rate of 1 / 13.499

The test-organism - which can create three offspring - has a size of 20.480 bytes, the
critical mutation rate is between 1

9.001 and 1
11.003 ; the probability that at least one bit is

changed is between 84.5% and 89.7%.

3.2 Chromosomal inversion - byte eXCHanGe

A different kind of mutation happens when a segment of a chromosome is reversed. This
happens when a segment breaks off and is rearranged in the wrong way.

A similar method is used in this project: two consecutive d-words (that means, 4 codons
each) are exchanged. This mutation is not as dangerous as it may look like at first; the
codon streams forming a functional part are very big, thus are not too sensitive on such
local translocations.

3.3 Deletion, insertion, translocation 11

Figure 3.5: Five populations with a Figure 3.6: Five populations with a
mutation rate of 1 / 26.501 mutation rate of 1 / 27.011

Figure 3.7: Five populations with a Figure 3.8: Five populations with a
mutation rate of 1 / 27.253 mutation rate of 1 / 27.509

These graphs show that the critical mutation rate is much sharper than for Bitflips -
this is what you would expect as Byte Exchange has much stronger effects.

3.3 Deletion, insertion, translocation

Deletion is a mutation in which a part of the DNA is missing; insertion is the inverse process,
where an additional sequence of DNA is included into the genom. Translocation is a com-
bination of these mutations: A part of the DNA breaks off and is included at a different place.

A similar method can be realized in artificial organisms in the computer system within
one simple algorithm. Three random values are calculated (the place of the mutation P ,
the size of the inserted NOP block Si and the size of the translocated block Sb). Then at
P, a block with the size of Sb will be translocated Si bytes, the new created block at P will
be filled with NOPs.

3.4 Horizontal gene transfer 12

Figure 3.9: Deletion process in the organism. Grey are NOPs, red and orange are
functional parts. Red is not moved, orange is the translocated sequence. The second red
part is smaller after deletion, as it has lost some of its code.

Figure 3.10: Insertion process in the organism. Grey are NOPs, red and orange are
functional parts. Red is not moved, orange is the translocated sequence. The whole orange
part is translocated, thus there is nothing deleted - just an insertion of NOPs.

3.4 Horizontal gene transfer

Horizontal gene transfer is a process in which an organism incorporates genetic material
from another organism without being the offspring of that organism. In biological systems,
this is a controlled (not by random mutations) method to receive beneficial functions such
as antibiotic resistance. Photosynthesis is an important process which has been developed
with horizontal gene transfer from different bacteria.

In the artificial system, an organism could try to interact with other organism and
exchange valid code, and therefore perform a symbiotic conjugation. However, this would
require a specific protocol for communication (such as F-plasmids in bacteria) - which is
not developed so far.

Nevertheless the artificial organism could try to gain new information from other files,
just by opening them and copy some parts of their code. In the case that the other file is
written in the same language, the organism has the chance of getting new functions.

3.5 *Polymorphism: neutral codon variation

In the artificial organisms, the alphabet has 28 = 256 entries which map to 45 or less
instructions, thus there is a big redundancy - that means several codons map to the same

4 Further improvements 13

amino acid.

The organism can scan thru its alphabet, detect equal amino acids, then scan its
codon-stream and exchange the codons which point to the same amino acid.

There are a few advantages to use this technique in artificial organism: Firstly, codons
which point to isolated amino acids (these who can not be transformed by a single bitflip
to another amino acid of the same kind) can be de-isolated, thereby increase the robustness
of the overall code. Secondly, such macro mutations are of high importance to bypass
natural enemies (such as antivirus software), thus increase fitness. And thirdly, mutations
in the polymorphism-engine itself or variations of the START or STOP codon could lead
to unpredictable results.

4 Further improvements

4.1 Start- and Stop codons: Splicing

Natural genetic code contains alot of non-functional garbage, which can be old unused
DNA or (malformed) duplicates of actual functional code. In human DNA, approximately
95% of the DNA is garbage. These non-coding parts are called Introns, the functional
parts are Exons. Before translation of mRNA into proteins, the introns are cutted out in
a process called Splicing - this is done by taking usage of two special codons - the START
and the STOP codon. Each functional part starts with a START-codon and ends with
a STOP-codon - the parts between a STOP codon and the next START codon (which is
actually the intron) will be removed.

The advantage of such introns is that within the unused code new DNA sequences could
be developed which are (in very rare cases) actually functional - and have different behaviour.
Together with the additional possibility for altering its code, this would be a special gain
for artificial organisms.

Figure 4.1: Splicing functionality in a artificial organism

Implementing a very small splicing algorithm into the translator can be achieved in the
following way:

4.1 Start- and Stop codons: Splicing 14

• All codons in the form of 1??1.???1 (32 codons) point to a NOP amino acid

• At the translation, whenever there is a STOP codon, AL=0x91 (1001.0001); whenever
there is a START codon, AL=0x0

• Each codon will be OR’ed with AL

• In the end, each codon after a STOP mark will be redirected to a NOP amino acid -
until there is a START codon

4.2 Optimization of the instruction set 15

4.2 Optimization of the instruction set

The original instruction set had 43 different entries. Ofria, Adami and Collier found out,
that a smaller instruction set leads to higher robustness under mutations, thus higher
fitness[6].

In their experiments, the reason is that small instruction set requires bigger realisations
of function, thus the risk of a lethal mutation is spread over a larger area. In our realisation,
a second advantage appeares. A small instruction set leads to a more redundant alphabet,
therefore allows more codons to point to the same amino acid. In the end, there is a bigger
probability that a single BitFlip changes the codon such that it still points to the original
amino acid.

Peter Ferrie was able to create an optimized instruction set with just 18 entries, by
replacing an instruction with a combination of other instructions.[11] One simple example
is zer0 → save+xor.

For implementing these optimizations, one has to take care of changed Registers
and Flags. This can be done by using Stack instruction (pushall and popall) or even
implement a new pseudoregister (in the .data section) with some special properties.

Unfortunately, these implementations lead to an excessive useage of evolutionary
dangerous instructions, which are instructions that lead to the programs crash if they are
replaced by other instructions.

I consider dangerous instructions as everything that interacts with the stack (push,
pop, pushall, popall, CallAPILoadLibrary), that influences the code flow (JnzDown,
JnzUp, call, saveJmpOff), and that interacts with the memory (saveWrtOff, writeByte,
writeDWord, getdata). One can create two further categories: semi-harmless, which are all
instructions that change the values of RegA, RegB, RegD and BC2, and harmless instructions
just change the BC1 register.

Figure 4.2: Original instruction set Figure 4.3: zer0 removed

4.3 Optimization of the alphabet 16

Figure 4.4: subsaved removed Figure 4.5: addNNNN removed

Figure 4.6: addsaved removed Figure 4.7: add0001 removed

The x-axis shows the different instructions (with the same order as written in chapter
2), the y-axis gives the (normalized) appearence of the instruction in an organism. It is
interesting to see how dangerous instruction density increases, especially after removing the
addsaved instruction.

4.3 Optimization of the alphabet

To achieve the optimal robustness, evolution has lead to a special order of codon mapping.
As an example, the amino acid Proline can be coded via CCU, CCC, CCA and CCG. That
means, whenever a mutation changes the third nucleobase, still a codon remains that codes
Prolin (in biological systems, mutations happens most often at the third nucleobase).

For artificial organisms, one has 256 slots for about 45 instructions, and furthermore
different pairs of exchanged codons have different probability to cause mistakes (exchanging
add0001 with add0004 may cause less problems than exchanging add0001 with pushall).

This is a nonlinear problem, and solutions by hand take long and are of low quality.
However, one can reformulate the problem - with the help of a bit of physics:

4.3 Optimization of the alphabet 17

Let’s imagine the codons as objects in a special space, such that each two codons with
one bit difference are neighbors (the geometry of this space is an 8 dimensional cube with
codons on the corners). For example, the codon 0000.0000 and 0010.0000 are neighbors.
Each codon interacts with its neighbors, thus has an interaction energy (which depends on
the types of the codons).

We can define V(A,B) as the interaction energy of codon A and B. One possible
definition would be

V(A,B) = 0 if A = B
V(A,B) = 0.5 if A and B are addNNNN or sub0001
V(A,B) = 0.66 if A and B are harmless instructions
V(A,B) = 0.75 if A and B are harmless or semi-harmless instructions
V(A,B) = 1 else (if A or B is a dangerous instruction or a START or STOP codon)

Now we can define the total energy of the system as:

Etotal =
256∑
i=1

8∑
j=1

V (codoni, codonj)

The total energy of a maximum random system would be 2.048, the mimumum total energy
of a system with just one single instruction would be zero.

Finally, we can reformulate ”find an optimal alphabet” into ”find the minimal interac-
tion energy of the system”. There are several ways to find a minimum energy, one is the
Metropolis-Algorithm; we use a slightly modified one.

First, we fill the 256 entries with instructions of random order, and calculate the total
energy of the system. Then we exchange a few instructions randomly, and calculate the new
total energy. If the new energy is smaller than the old one, we keep the new system, oth-
erwise we continue with the old one. To find a (local) minimum, one can repeat that method.

Figure 4.8: Energy minimization of five systems. x-axis is iteration number (in 1000s),
y-axis is energy.

5 Experiments 18

The figure shows that the alphabet reaches a good local minimum after a few 100.000
iterations. It also shows that systems with different starting order find local minimal of
approximately the same energy.

5 Experiments

An experiment measures the fitness of the organisms by letting them struggle for limited
resources (such as CPU time and memory). To control the experiment, several guard files ran
in the background, to close endless-loop files, multiple instances of the same file, unmutated
files by a certain probability. A more detailed explanation can be found in [8].

5.1 Hamming distance

In the first experiment, we analyse the long time behaviour of a population, that can just
perform BitFlips and Byte XCHG.

The Hamming distance (difference in the bit-code) with respect to the original ancestor
is calculated every 3 minutes.

Figure 5.1: Evolution of Hamming distance over 12 hours. x-axis: Hamming distance,
y-axis: time (in minutes)

It is very surprising and interesting, that after about 7.5 hours a mutation has occured
with the effect that some organisms can largely bypass the no-cloning guard. A deeper
analysis of that event would require reverse engineering of mutated code, which is a
non-trivial task - and therefore hasn’t been done yet.

However, this event is an indication that artificial organisms can bypass control instances
very fast.

5.2 Effect of alphabet ”energy” 19

A second experiment has been performed, with an organism which contains about 90%
introns (similar to natural organisms).

Figure 5.2: Evolution of Hamming distance for an organism with a high amount of introns
over 6 hours. x-axis: Hamming distance, y-axis: time (in minutes)

As one would expect, the mutation rate is much higher and very constant, the standard
derivation of the hamming distance spreads continuously.

5.2 Effect of alphabet ”energy”

As explained in chapter 4.3, each alphabet has a specific ”energy”. To see whether the used
definition of the interaction actually give a good result for robust alphabets, an evolutionary
experiment has been performed.

Figure 5.3: Energy 1152.1 (blue) vs. Figure 5.4: Energy 1152.1 (blue) vs.
1662.9 ± 11.2 (red) 1386.8 ± 3.2 (red)

Figure 5.3 and 5.4 show that lower energy has a better fitness, thus the presented
interaction definition is at least roughly a good approximation for an optimal alphabet.

5.3 Effect of Start- and Stop-codons 20

5.3 Effect of Start- and Stop-codons

One experiment has been performed with a number of 100.000 random codons within a
STOP and a START codon - a big intron. Several organisms have converted a part of
the intron into an exon (by introducing a START codon) without any negative effect - all
converted functional parts were neutral mutations.

There were two very surprising results: The biggest converted part had 33 codons, and
still worked without problem. A different converted exon even managed to perform an API
call without crashing.

Such huge blocks of non-lethal codons and API calls could be very valuable for artificial
organisms, which are chased by behaviour scanners and API call tracers.

6 Outlook 21

6 Outlook

There are several features in the natural protein biosynthesis (or in microbiology in general)
which could be used in this artificial concept:

Alternative Splicing: Before translating the codons into amino acids, the splicing
process cuts out introns. In natural systems, there can be an alternative splicing process,
which can create the final codon sequence in many alternative ways. For example, exons
can be combined in different ways, some exons could be cutted out, introns can be
coded, and other methods. This process is influenced by regulatory elements (such as pro-
teins). An analogy to this process would increase the variability of the organisms drastically.

Protein Folding: After translation of codons into amino acids, a process called folding
gives a specific 3D structure to the amino acid chain - this structure is mainly responsible
for the proteins chemical properties. A similar further layer of translation may have
advantages for the organisms too.

Protocol for Horizontal Gene Transfer: To exchange valuable information as
antibiotic resistance, bacteria have developed processes called conjugation. To develope a
process like that for exchanging useful information within the population would be a big
advantage.

There are some further techniques which would increase the variability of the organisms,
such as increasing the functional code size. The difficulties come from restrictions of the
PE format, which requires more than one field to be mutated in the same manner. This is a
very unlikely process - finding a solution to that problem would open many new possibilities
for the organisms.

The experiments have shown a very promising behaviour of the different mutation
techniques. Especially the START- and STOP-codon experiment, where organisms
performed an additional API call, indicates that even macro mutations are realistic within
this concept - and behaviour changing mutations are not always lethal.

The question of how antivirus programs can detect organisms using this technique
is open. The organism’s non-lethal configuration is infinite, and due to the fact that
darwinian evolution is not predictable, algorithmic approaches are probably unusable and
limited. Behaviour scanners are likely (due to effects that has been shown with Splicing)
not practicable, too. Statistical approaches may work for a low number of generations quite
good, but will most likely fail for big difference to the ancestor (at high generations or when
several macro mutations happened), as well.[12].

... as a conclusion, one can see:
The artificial organisms took the redpill - and enjoy their new freedom now...

REFERENCES 22

References

[1] Thomas S. Ray, An approach to the synthesis of life, Artificial Life II, vol. XI of SFI
Studies in the Sciences of Complexity, p.371-408, 1992.

[2] Kurt Thearling and Thomas S. Ray, Evolving Multi-cellular Artificial Life, Proceedings
of Artificial Life IV, MIT Press: Cambridge, 1994.

[3] Kurt Thearling and Thomas S. Ray, Evolving Parallel Computation, Complex Systems,
Volume 10, Number 3,1997.

[4] Claus O. Wilke, Jia Lan Wang, Charles Ofria, Richard E. Lenski and Christoph Adami,
Evolution of digital organisms at high mutation rates leads to survival of the flattest,
Nature, 412:331-333, 2001.

[5] Richard E. Lenski, Charles Ofria, Robert T. Pennock and Christoph Adami, The Evo-
lutionary Origin of Complex Features, Nature, 423:139-144, 2003.

[6] Charles Ofria, Christoph Adami, and Travis C. Collier, Design of Evolvable Computer
Languages, IEEE Transactions on Evolutionary Computation, vol. 6, no. 4, p.420-424,
2002.

[7] Dimitris Iliopoulos, Christoph Adami and Peter Ször, Darwin inside the machines:
Malware evolution and the consequences for computer security, Proceedings of Virus
Bulletin Conference 2008, p.187-194, 2008.

[8] Thomas Sperl, Taking the redpill: Artificial Evolution in native x86 systems, October
2010.

[9] Thomas Sperl, Mutational Robustness in x86 systems, November 2010.

[10] Peter Ferrie, Flibi Night, Virus Bulletin March 2011, p.4-5, 2011.

[11] Peter Ferrie, Flibi: Evolution, Virus Bulletin May 2011, p.6-15, 2011.

[12] Private communication with Mostafa Saleh in June 2011.

